Engineering

ClickHouse vs BigQuery 2026: Cloud Analytics Platform Comparison

Engineering Team

ClickHouse and BigQuery are both powerful analytical databases, but they differ significantly in architecture, pricing, and operational models. BigQuery offers a serverless experience with Google Cloud integration, while ClickHouse provides superior query performance with more predictable costs. This comparison helps you choose the right platform for your analytics needs.

Platform Overview

ClickHouse

ClickHouse is an open-source columnar database available as self-managed software or ClickHouse Cloud, optimised for real-time analytical queries.

Key characteristics:

  • Fastest query performance in class
  • Predictable, usage-based pricing
  • Real-time data ingestion
  • Open source with cloud option
  • Multi-cloud deployment

BigQuery

BigQuery is Google’s fully managed, serverless data warehouse with built-in machine learning and BI capabilities.

Key characteristics:

  • Serverless, zero operations
  • Deep GCP ecosystem integration
  • Built-in ML (BigQuery ML)
  • Automatic scaling
  • Pay-per-query pricing model

Architecture Comparison

ClickHouse Architecture

┌─────────────────────────────────────────┐
│         ClickHouse Cluster              │
├─────────────────────────────────────────┤
│  ┌─────────┐  ┌─────────┐  ┌─────────┐  │
│  │ Shard 1 │  │ Shard 2 │  │ Shard N │  │
│  │ Node    │  │ Node    │  │ Node    │  │
│  └────┬────┘  └────┬────┘  └────┬────┘  │
│       │            │            │       │
│       └────────────┼────────────┘       │
│                    │                    │
│           Local SSD Storage             │
│         (Columnar, Compressed)          │
└─────────────────────────────────────────┘

BigQuery Architecture

┌─────────────────────────────────────────┐
│            BigQuery                     │
├─────────────────────────────────────────┤
│  ┌─────────────────────────────────┐    │
│  │        Dremel Engine            │    │
│  │   (Distributed Query Execution) │    │
│  └───────────────┬─────────────────┘    │
│                  │                      │
│  ┌───────────────▼─────────────────┐    │
│  │         Colossus                │    │
│  │   (Distributed Storage Layer)   │    │
│  └─────────────────────────────────┘    │
│                                         │
│        Separation of Compute/Storage    │
└─────────────────────────────────────────┘

Performance Comparison

Query Performance

Query TypeClickHouseBigQuery
Simple aggregation (1B rows)0.5-1s3-8s
Complex GROUP BY1-2s5-15s
Time-series rollup0.3s2-5s
Large JOIN3-5s10-30s
Concurrent queries (50+)ConsistentVariable

ClickHouse advantages:

  • 3-10x faster query execution
  • No cold start latency
  • Consistent performance under load
  • Better for real-time dashboards

BigQuery advantages:

  • Handles extremely large datasets (petabytes)
  • No infrastructure management
  • Automatic query optimisation
  • Slot-based scaling for predictable performance

Query Cold Start

ScenarioClickHouseBigQuery
First queryImmediate1-3s slot allocation
Cached queryVery fastFast (cache hit)
Large scanProportionalSlot-dependent

Pricing Comparison

ClickHouse Cloud Pricing

Compute: ~$0.30-0.50 per compute hour
Storage: ~$0.04 per GB/month
Ingestion: Included
Data transfer: Standard cloud rates

BigQuery Pricing

On-demand:
- Analysis: $6.25 per TB scanned
- Storage: $0.02 per GB/month (active)
- Storage: $0.01 per GB/month (long-term)

Flat-rate (slots):
- $2,000/month per 100 slots
- Predictable but requires commitment

Cost Scenarios

ScenarioClickHouse CloudBigQuery On-Demand
10TB stored, 100TB scanned/month~$1,500/month~$625 + storage
100TB stored, 1PB scanned/month~$5,000/month~$6,250 + storage
Real-time dashboards (always-on)PredictableCan be expensive
Sporadic queriesMay over-provisionCost-efficient

Cost analysis:

  • BigQuery excels for sporadic, large-scale queries
  • ClickHouse is more cost-effective for continuous workloads
  • BigQuery on-demand can surprise with large scans
  • ClickHouse provides predictable costs

For cloud cost strategies, see our AWS cost optimisation guide.

Feature Comparison

FeatureClickHouseBigQuery
Query languageSQL (extended)Standard SQL
Real-time ingestionExcellentGood (streaming)
ServerlessCloud optionFully serverless
ML integrationLimitedBigQuery ML
BI integrationGrafana, etc.Looker, Data Studio
GeospatialBasicExcellent (GIS)
Semi-structuredGoodExcellent
Data sharingBasicAnalytics Hub
Multi-cloudYesGCP only
Open sourceYesNo

Use Case Recommendations

Choose ClickHouse When:

Real-time analytics and dashboards

-- Sub-second queries for live dashboards
SELECT
    toStartOfMinute(event_time) AS minute,
    count() AS events,
    uniqExact(user_id) AS users,
    quantile(0.95)(latency_ms) AS p95_latency
FROM events
WHERE event_time >= now() - INTERVAL 1 HOUR
GROUP BY minute
ORDER BY minute DESC

High-frequency queries with predictable costs

  • Always-on dashboard serving
  • High query concurrency
  • Cost-sensitive workloads

Multi-cloud or cloud-agnostic requirements

  • Avoid GCP lock-in
  • Self-hosted option needed
  • Hybrid cloud deployments

Log analytics and observability

  • High-volume log ingestion
  • Real-time monitoring
  • Time-series metrics

Choose BigQuery When:

Serverless data warehousing

-- Leverage BigQuery ML
CREATE OR REPLACE MODEL `project.dataset.churn_model`
OPTIONS(model_type='logistic_reg') AS
SELECT
    customer_features.*,
    churned
FROM `project.dataset.customer_features`;

Deep GCP ecosystem integration

  • Pub/Sub streaming ingestion
  • Dataflow transformations
  • Looker visualisation
  • Vertex AI integration

Ad-hoc analysis with variable workloads

  • Sporadic large queries
  • Data exploration
  • Pay-per-query efficiency

Geospatial analytics

-- BigQuery GIS capabilities
SELECT
    store_id,
    ST_DISTANCE(
        ST_GEOGPOINT(store_lon, store_lat),
        ST_GEOGPOINT(customer_lon, customer_lat)
    ) AS distance_meters
FROM stores, customers
WHERE ST_DWITHIN(
    ST_GEOGPOINT(store_lon, store_lat),
    ST_GEOGPOINT(customer_lon, customer_lat),
    10000  -- 10km radius
)

Integration Ecosystem

ClickHouse Integrations

Data ingestion:

  • Kafka, Kinesis direct
  • Vector, Fluent Bit
  • dbt adapter
  • Airbyte, Fivetran

Visualisation:

  • Grafana (excellent)
  • Metabase, Superset
  • Tableau, Looker

Orchestration:

  • Airflow, Dagster
  • Prefect

BigQuery Integrations

GCP native:

  • Pub/Sub, Dataflow
  • Cloud Functions
  • Vertex AI
  • Looker, Data Studio

Third-party:

  • All major ETL tools
  • All major BI tools
  • dbt (first-class support)

Operational Comparison

ClickHouse Operations

Self-managed:

  • Full control
  • Operational overhead
  • Maximum flexibility

ClickHouse Cloud:

  • Managed infrastructure
  • Still requires some configuration
  • Multi-cloud options

BigQuery Operations

  • Zero infrastructure management
  • Automatic scaling and optimisation
  • No operational overhead
  • Google handles everything

Query Language Differences

ClickHouse SQL Extensions

-- ClickHouse-specific functions
SELECT
    toStartOfHour(timestamp) AS hour,
    arrayJoin(tags) AS tag,
    countIf(status = 'error') AS errors,
    quantileTDigest(0.99)(latency) AS p99
FROM events
WHERE timestamp >= now() - INTERVAL 24 HOUR
GROUP BY hour, tag
HAVING errors > 10

BigQuery Standard SQL

-- BigQuery syntax
SELECT
    TIMESTAMP_TRUNC(timestamp, HOUR) AS hour,
    tag,
    COUNTIF(status = 'error') AS errors,
    APPROX_QUANTILES(latency, 100)[OFFSET(99)] AS p99
FROM events,
UNNEST(tags) AS tag
WHERE timestamp >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 24 HOUR)
GROUP BY hour, tag
HAVING errors > 10

Migration Considerations

BigQuery to ClickHouse

Consider when:

  • Query performance is critical
  • Costs are becoming unpredictable
  • Multi-cloud strategy needed
-- Export from BigQuery
EXPORT DATA OPTIONS(
    uri='gs://bucket/export/*.parquet',
    format='PARQUET'
) AS
SELECT * FROM dataset.table;

-- Import to ClickHouse
INSERT INTO table
SELECT * FROM s3('https://storage.googleapis.com/bucket/export/*.parquet', 'Parquet')

ClickHouse to BigQuery

Consider when:

  • Need serverless operations
  • Heavy GCP ecosystem usage
  • BigQuery ML requirements

Conclusion

ClickHouse and BigQuery serve different operational models:

Choose ClickHouse for real-time analytics, predictable costs, multi-cloud flexibility, and scenarios where query performance is paramount. It excels at always-on workloads with high query volumes.

Choose BigQuery for serverless operations, deep GCP integration, variable workloads, and when built-in ML or geospatial capabilities are needed. It’s ideal when you want zero operational overhead.

Consider your workload pattern: Continuous, high-frequency queries favour ClickHouse. Sporadic, large-scale analysis may favour BigQuery’s pay-per-query model.

For help choosing the right analytics platform, contact our team to discuss your requirements.

External Resources:

Chat with real humans
Chat on WhatsApp